Robot Modeling And Control, Second Edition

By (author) Spong, MW
Replaces 9780471649908
Electronic version available as 9781119524045
Ships between 4 and 6 weeks
By (author) Spong, MW
Description

A New Edition Featuring Case Studies and Examples of the Fundamentals of Robot Kinematics, Dynamics, and Control

In the 2nd Edition of Robot Modeling and Control, students will cover the theoretical fundamentals and the latest technological advances in robot kinematics. With so much advancement in technology, from robotics to motion planning, society can implement more powerful and dynamic algorithms than ever before. This in-depth reference guide educates readers in four distinct parts; the first two serve as a guide to the fundamentals of robotics and motion control, while the last two dive more in-depth into control theory and nonlinear system analysis.

With the new edition, readers gain access to new case studies and thoroughly researched information covering topics such as: 

●      Motion-planning, collision avoidance, trajectory optimization, and control of robots

●      Popular topics within the robotics industry and how they apply to various technologies

●      An expanded set of examples, simulations, problems, and case studies

●      Open-ended suggestions for students to apply the knowledge to real-life situations

A four-part reference essential for both undergraduate and graduate students, Robot Modeling and Control serves as a foundation for a solid education in robotics and motion planning.


Table of contents

Preface v

1 Introduction 1

1.1 Mathematical Modeling of Robots 5

1.1.1 Symbolic Representation of Robot Manipulators 5

1.1.2 The Configuration Space 5

1.1.3 The State Space 6

1.1.4 The Workspace 7

1.2 Robots as Mechanical Devices 7

1.2.1 Classification of Robotic Manipulators 8

1.2.2 Robotic Systems 10

1.2.3 Accuracy and Repeatability 10

1.2.4 Wrists and End Effectors 12

1.3 Common Kinematic Arrangements 13

1.3.1 Articulated Manipulator (RRR) 13

1.3.2 Spherical Manipulator (RRP) 14

1.3.3 SCARA Manipulator (RRP) 14

1.3.4 Cylindrical Manipulator (RPP) 15

1.3.5 Cartesian Manipulator (PPP) 15

1.3.6 Parallel Manipulator 18

1.4 Outline of the Text 18

1.4.1 Manipulator Arms 18

1.4.2 Underactuated and Mobile Robots 27

Problems 27

Notes and References 29

I The Geometry of Robots 33

2 Rigid Motions 35

2.1 Representing Positions 36

2.2 Representing Rotations 38

2.2.1 Rotation in the Plane 38

2.2.2 Rotations in Three Dimensions 41

2.3 Rotational Transformations 44

2.4 Composition of Rotations 48

2.4.1 Rotation with Respect to the Current Frame 48

2.4.2 Rotation with Respect to the Fixed Frame 50

2.4.3 Rules for Composition of Rotations 51

2.5 Parameterizations of Rotations 52

2.5.1 Euler Angles 53

2.5.2 Roll, Pitch, Yaw Angles 55

2.5.3 Axis-Angle Representation 57

2.5.4 Exponential Coordinates 59

2.6 Rigid Motions 61

2.6.1 Homogeneous Transformations 62

2.6.2 Exponential Coordinates for General Rigid Motions 65

2.7 Chapter Summary 65

Problems 67

Notes and References 73

3 Forward Kinematics 75

3.1 Kinematic Chains 75

3.2 The Denavit-Hartenberg Convention 78

3.2.1 Existence and Uniqueness 80

3.2.2 Assigning the Coordinate Frames 83

3.3 Examples 87

3.3.1 Planar Elbow Manipulator 87

3.3.2 Three-Link Cylindrical Robot 89

3.3.3 The Spherical Wrist 90

3.3.4 Cylindrical Manipulator with Spherical Wrist 91

3.3.5 Stanford Manipulator 93

3.3.6 SCARA Manipulator 95

3.4 Chapter Summary 96

Problems 96

Notes and References 99

4 Velocity Kinematics 101

4.1 Angular Velocity: The Fixed Axis Case 102

4.2 Skew-Symmetric Matrices 1